ОДИН ПОДХОД К РАЗРАБОТКЕ ХРАНИЛИЩА ДАННЫХ ДЛЯ МОДЕЛИ МИРОВОЙ ЭКОНОМИКИ В. ЛЕОНТЬЕВА

Герасимов Николай Александрович

кандидат технических наук, доцент кафедры информатики РЭУ им. Г. В. Плеханова.

Адрес: ФГБОУ ВО «Российский экономический университет имени Г. В. Плеханова»,

117997, Москва, Стремянный пер., д. 36.

E-mail: gera01@ya.ru

В статье разработан и описан вариант структуры многомерного хранилища данных (в виде куба) для хранения и анализа результатов экономической модели, представленной группой экспертов под руководством лауреата Нобелевской премии Василия Леонтьева. Глобальная модель мировой экономики, построенная на макроэкономических показателях по схеме «затраты – выпуск», позволяет конструировать различные сценарии экономического развития. Результаты сценарных расчетов помещаются в специальное хранилище данных в концепции многомерного куба. Построение такого хранилища модельных макроэкономических показателей позволяет расширить аналитическую функциональность модели Леонтьева. Предложенный подход к организации результатов многовариантного моделирования сложных экономических объектов основан на использовании эффективного OLAP-режима систем класса Complete Analysis System.

Ключевые слова: хранилище данных, многомерное хранилище, модель мировой экономики, Василий Леонтьев, OLAP-системы, полный анализ, комплексный анализ.

DATA STORAGES FOR V. LEONTIEV'S MODEL OF GLOBAL ECONOMY

Gerasimov, Nikolay A.

PhD, Assistant Professor of the Department for Information Science of the PRUE.

Address: Plekhanov Russian University of Economics, 36 Stremyanny Lane, Moscow, 117997, Russian Federation.

E-mail: gera01@ya.ru

The article designed and depicted a variant of the structure for multidimensional data storage (as a cube) to store and analyze results of the economic model presented by a group of experts headed by the Nobel Prize Winner Vasiliy Leontiev. The global model of world economy built on macro-economic indicators according to the scheme 'costs – output' gives an opportunity to design different scenarios of economic development. The results of scenario calculations are placed in a special data storage in the concept of multidimensional cube. Construction of such a storage of model macro-economic indicators will allow experts to extend analytical

functionality of Leontiev's model. The proposed approach to organizing results of multi-

variant modeling of complicated economic objects is based on using the efficient OLAP – mode of the Complete Analysis System.

Keywords: data storage, multidimensional storage, model of world economy, Vasiliy Leontiev, OLAP-systems, complete analysis, complex analysis.

конце 70-х гг. прошлого столетия группой экспертов ООН под руководством лауреата Нобелевской премии В. Леонтьева опубликован доклад «Будущее мировой экономики», посвященный решению проблемы уменьшения разрыва между экономическими уровнями развитых и развивающихся стран. На основе сложной математической модели ими был выполнен многовариантный прогноз структурных изменений мировой экономики. В этой уникальной модели весь мир дезагрегирован на 15 региональных блоков, подразделяемых в свою очередь на 45 секторов экономической деятельности. Каждый блок описывался 175 уравнениями с помощью 269 переменных [3].

В основу модели положена экономическая схема «затраты - выпуск», которая является универсальным, широко применяемым инструментарием экономической науки. Эта схема позволяет анализировать условия внутренней увязки параметров хозяйства и устанавливать, какие пропорции обеспечивают бесперебойность и надежность процесса воспроизводства. Одним из главных критериев модели является требование отсутствия дефицита и условие не производить лишнюю избыточную продукцию. Предложенный В. Леонтьевым инструментарий модели позволяет строить различные сценарии развития мировой экономики и представлять результаты моделирования в виде сложных иерархических таблиц, использование которых в дальнейших экономических исследованиях довольно затруднено.

Для повышения эффективности применения результатов модели ООН предлагается представить их в виде аналитического многомерного куба, структура которого определяется классификацией параметров, заложенных в базовой экономиче-

ской модели. Применение концепции многомерных хранилищ для размещения данных со сложной иерархической структурой является инновационным направлением использования современных ВІ- и OLAP-технологий в аналитике.

В отчетном докладе ООН страны мира (в модели 170 стран) классифицированы по уровню развития: развитые страны с высоким уровнем дохода на душу населения, развивающиеся с богатыми ресурсами и развивающиеся с бедными ресурсами.

Экономические данные стран разделены на 15 географических регионов и 4 группы специального агрегирования (мир, развитые страны, развивающиеся страны с богатыми ресурсами и развивающиеся страны с бедными ресурсами).

Это дает возможность как производить сравнение регионов в целом с миром, так и выделять различные части этих регионов, а также получать выборки по отдельным странам. Страны также классифицируются по уровню дохода на душу населения: высокий, средний и низкий.

В рассматриваемой модели экономические показатели распределены на 12 групп деятельности (табл. 1) и 10 групп отраслей (табл. 2). На основании проработанной классификации показателей построена модель многомерного куба, структура которого для наглядности представлена в виде реляционной модели типа «снежинка» (рис. 1).

Под многомерным кубом здесь понимается такая информационная конструкция хранилища, которая позволяет быстро и эффективно получать из базовой таблицы фактов (fact table) куба, используя таблицы измерений (dimension), различные срезы (slices) – аналитические отчеты (т. е. двухмерные или иерархические таблицы).

Таблица 1 Группы экономической деятельности

Номер группы	Наименование деятельности
1	Потребление и население
2	Международные операции
3	Инвестиции и капитал
4	Деятельность по снижению загрязнения среды
5	Чистый совокупный выброс
6	Добыча и ресурсы

Кумулятивный объем добычи ресурсов на

конец периола

Рыба

Экспорт

Импорт

Уровень производства

Чистый экспорт ресурсов

7

8

9

10

11

12

Таблица 2 **Группы экономических показателей**

Номер группы	Наименование показателя
1	Макропоказатели
2	Машиностроение
3	Добывающая
4	Строительство
5	Транспорт и связь
6	Товары народного потребления
7	Сельское хозяйство
8	Нефтехимия
9	Торговля
10	Прочие

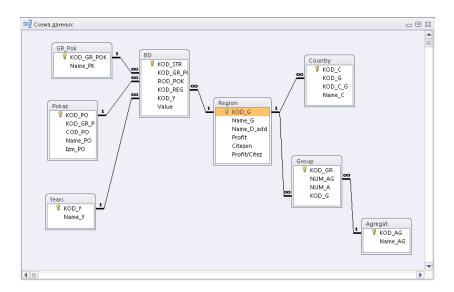


Рис. 1. Фрагмент схемы типа «снежинка» для модели ООН В. Леонтьева: ВD - таблица фактов, в которой содержатся фактические экономические данные и «суррогатные» ключевые поля для связи с таблицами-«измерениями» (Dimension); Pokaz - таблица показателей; GR_Pok - группировка показателей; Years - годы; Region - список регионов; Country - страны; Group - группы стран; Agregat - название агрегатов

Поскольку все данные модели представлены в исходных иерархических Excelтаблицах, разработана схема процесса их трансформации и загрузки данных в хранилище на языке высокого уровня VBA.

Процесс трансформации и загрузки (Extract, Transform and Load – ETL-процесс) данных в куб можно отобразить блоксхемой (рис. 2).

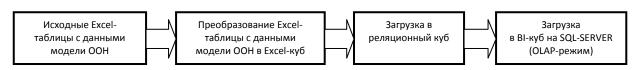


Рис. 2. Структура процесса ETL для модели ООН

Положительный момент такого подхода заключается в том, что уже на этапе создания реляционного куба появляется реальная возможность с помощью перекрестных (Cross) SQL-запросов легко получать принципиально новые выходные данные из базовой модели ООН, тем самым значительно расширив границы аналитического функционала модели сложной экономиче-

ской модели. Пример такого аналитического запроса на языке SQL показан ниже. Запрос формулируется следующим образом: выбрать данные по регионам с кодом = 1 (Северная Америка) и кодом = 2 (Латинская Америка) и по групповому показателю с кодом = 11 (импорт) и выдать таблицу в форме среза «показатель – годы»:

TRANSFORM Sum(BD.Vvalue) AS [Значение]
SELECT Pokaz.KOD_GR_POK, Pokaz.Name_PO AS [Наименование параметра]
FROM Years INNER JOIN (Regions INNER JOIN ((GR_Pok INNER JOIN BD ON GR_Pok.KOD_GR_POK=BD.KOD_GR_POK) INNER JOIN Pokaz ON (GR_Pok.KOD_GR_POK=Pokaz.KOD_GR_POK) AND (Pokaz.KOD_POK=BD.NUM_POK)) ON Regions.KOD_REG=BD.KOD_REG) ON Years.KOD_Y=BD.KOD_YEAR
WHERE Regions.KOD_REG IN (1,2) AND Pokaz.KOD_GR_POK IN (11)
GROUP BY Pokaz.KOD_GR_POK, Pokaz.Name_PO
PIVOT Years.Name_Y;

Результаты созданного SQL-запроса показаны в табл. 3. В данном запросе легко изменить номера регионов и номера показателей в условии запроса (ключевое слово WHERE...), а также добавить новые условия и ограничения и получить нужные результаты для анализа стратегий развития экономики нужного региона или страны.

Таблица 3 Вывод показателей по импорту (группа деятельности 11) для регионов 1 и 2 (Северная и Латинская Америка) – фрагмент

Наименование параметра	1970	1980	1990	2000
Автомобили	11,5	19,8	35	63,5
Бумага	2,2	3,9	5,7	9,4
Древесина и пробка	1,3	2,4	2,9	4,1
Другие транспортные средства	0,3	0,5	1,1	2,1
Зерновые	5	7,2	13,5	22,9
Инструмент	1,4	2,6	4,7	8,1
Каучук и резина	0,4	0,7	1,2	2,2
Корнеплоды	1	1,3	1,8	2,1
Культуры с высоким содержания протеина	1,7	2,3	3,3	4,4

Дальнейшее развитие аналитических инструментов на основе использования многомерного хранилища данных может происходить с использованием различных внешних для хранилища оболочек типа OLAP-браузеров, которые позволяют в режиме Drag-And-Drop с помощью манипулятора мышки формировать и конфигурировать сложные условия аналитических срезов в выходных данных модели ООН. Такие инструменты широко распространены в системах табличной обработки информации Excel и Calc OpenOffice. Пример построения аналитического среза,

аналогичного вышеприведенному запросу, показан на рис. 3. Манипулируя переносом параметров в столбцы и строки макета Excel – сводного отчета, можно легко и быстро получать требуемые аналитические срезы на основе построенного хранилища данных и тем самым повысить эффективность аналитического процесса. Перегрузка реляционной схемы многомерного хранилища типа «снежинка» в среду ВІ Analysis Services фирмы Microsoft позволяет перейти на качественно новые инструменты выполнения аналитических процедур. При этом повышается быстродействие

подготовки отчетов и появляется возможность строить более удобные приложения на базе языка запросов к многомерным

хранилищам данных MDX и языка программирования Python [2].

	G1 ▼	fx									
	Α	В	С	D	E	F	G	Н		J	K
1	Сумма по полю У		Name 🔻					Список полей сводной таблицы			▼ x
2	Name_PO 🔻	KOD_GF ▼	1970	1980	1990		Общий и	Перетащите элементы в сводную табли			
3	Автомобили	11	10,8	18,2	30,6	47,8	107,4	Перетащите элементы в сводную тас			
4	4 Автомобили Итог		10,8	18,2	30,6	47,8	107,4	KOD_REG			
5	Бумага	11	1,9	3,4	4,6	6,5	16,4	Name_REG			
6	6 Бумага Итог		1,9	3,4	4,6	6,5	16,4	4 Name_R_add			
7	Древесина и проб	11	1,2	2,2	2,6	3,3	9,3				
8 Древесина и пробка Итог			1,2	2,2	2,6	3,3	9,3		OD_POK		
9	Другие транспорті	11	0,1	0,2	0,4	0,7	1,4	⊟ĸ	OD_GR_PO	K	
10				0,2	0,4	0,7	1,4	- ⊟ N	ame_PO		
11	Зерновые	11	1,3	1,6	2,2	2,8	7,9				
12	Зерновые Итог		1,3	1,6	2,2	2,8	7,9				
13	Инструмент	11	1,2	2	3,4	5,1	11,7	HI BROD-ILLAN			
14	Инструмент Итог		1,2	2	3,4	5,1	11,7	Name_Y			
15	Каучук и резина	11	0,4	0,6	1	1,5	3,5		value		
16	16 Каучук и резина Итог		0,4	0,6	1	1,5	3,5				
17	Корнеплоды	11	0,4	0,5	0,5	0,5	1,9	Помести	06n	асть строк	~
18	Корнеплоды Итог		0,4	0,5	0,5	0,5	1,9	TIONECTY	1188	derb erpok	

Рис. 3. Пример OLAP-браузера Excel для модели OOH

Другим популярным средством построения аналитических отчетов для представления результатов моделирования не только в форме таблиц, но и в форме специальных диаграмм, являются инновационные системы – надстройки типа Tableau и OlikView.

В заключение отметим, что разработанный вариант перехода от сложных плоских иерархических таблиц, которые обычно появляются как результат крупных экономических исследований, к многомерным хранилищам данных позволяет значительно повысить эффективность аналитического инструментария и осуществить

переход от локальной аналитики к аналитике класса Complete Analysis. Модель мировой экономики Леонтьева, которая до сих пор используется для различных оценок состояния макроэкономических параметров в ООН, является убедительным тому подтверждением. Описанный выше подход, основанный на использовании эффективного OLAP-режима систем класса Complete Analysis System к организации аналитических процедур, может использоваться и для других экономических приложений, в которых имеются многовариантные результаты решения и сложные данные с иерархической структурой.

Список литературы

- 1. *Маккинни У.* Python и анализ данных. М. : ДМК Пресс, 2015.
- 2. Модель «затраты выпуск» Леонтьева. URL: http://www.iq-coaching.ru/nauchnye-otkrytiya/ekonomika/97.html
- 3. The Future of the World Economy. A Unite National Study by Wassily Leontief et al. New York: Oxford University Press, 1977.

References

- 1. Makkinni U. Python i analiz dannykh [Python and Data Analysis]. Moscow, DMK Press, 2015. (In Russ.).
- 2. Model' «zatraty vypusk» Leont'eva [Leontiev's Model 'Costs Output'.]. (In Russ.). Available at: http://www.iq-coaching.ru/nauchnye-otkrytiya/ekonomika/97.html
- 3. The Future of the World Economy. A Unite National Study by Wassily Leontief et al. New York, Oxford University Press, 1977.