MATHEMATIC METHODS IN STUDYING INTEREST RISK OF LONG-TERM BONDS
https://doi.org/10.21686/2413-2829-2016-1-101-107
Abstract
About the Author
Natalia V. PopovaRussian Federation
PhD, Assistant Professor, Professor of the Department for Higher Mathematics of the PRUE
36 Stremyanny Lane, Moscow, 117997, Russian Federation
References
1. Popova N. V. Vliyanie sroka do pogasheniya na izmenchivost' tseny obligatsii [The Impact of Due Date on Changeability of Bond Price]. Vestnik Finansovogo universiteta [Vestnik of the Finance University], 2013, No. 3 (75), pp. 72–84. (In Russ.).
2. Popova N. V. O nekotorykh svoystvakh dyuratsii Makoleya [Certain Features of Macaulay Duration]. Vestnik of the Finance University, 2011, No. 1 (61), pp. 42–46. (In Russ.).
3. Popova N. V. Rynochnye teoremy i ikh prodolzhenie [Market Theorems and their Extension]. Vestnik Rossiyskogo ekonomicheskogo universiteta imeni G. V. Plekhanova [Vestnik of the Plekhanov Russian University of Economics], 2013, No. 7 (61), pp. 93–101. (In Russ.).
4. Entsiklopediya finansovogo risk-menedzhmenta [Encyclopedia of Finance Risk Management], edited by A. A. Lobanov, A. V. Chugunov. 4th edition, revised and amended. Moscow, Al'pina Biznes Buks, 2009. (In Russ.).
5. Hawawini G. A. On the Mathematics of Macaulay’s Duration. Hawawini G. (ed.). Bond Duration and Immunization: Early Developments and Recent Contribution. Garland, 1982. 6. Pianca P. Maximum Duration of Below Par Bonds: A Closed-form Formula (June 6, 2005). Available at: http://ssrn.com/abstract=738445
Review
For citations:
Popova N.V. MATHEMATIC METHODS IN STUDYING INTEREST RISK OF LONG-TERM BONDS. Vestnik of the Plekhanov Russian University of Economics. 2016;(1):101-107. (In Russ.) https://doi.org/10.21686/2413-2829-2016-1-101-107