Forecasting Macro-Economic Indicators Based on Text Information from Strategic Management Field in Russia
https://doi.org/10.21686/2413-2829-2024-3-38-53
Abstract
The current situation in economic activity is notable for exponential increase in accessible e-information and serious interest in its use in order to get competitive advantages. The article studies influence of information published in mass media on the essential social and economic indicators, which show key concepts of the system of strategic management in Russia. Methodological basis of the research was formed by theories of cognitive, topical modeling and regressive analysis. In the investigation the author used methods of topical modeling, machine education and statistical analysis of data. The author put forward the procedure of automated plotting of the cause-and-effect diagram based on qualitative and quantitative data. The system of causal links between key concepts of the system gave a chance to build forecast models of high accuracy. Findings of the research showed that topics being highlighted in mass media can influence social and economic indicators. Unfortunately, accidental events can make mathematic models, relying on system inertia, inadequate. In theoretical aspect the article proposes the procedure of automated building of the cause-and-effect diagram based on heterogeneous data, which can eliminate the problem of subjectivity of expert estimations in plotting cognitive maps. In applied aspect models of forecasting the most important social and economic indicators based on mass media publications were worked out that lean against cause-and-effect diagram and can support well-grounded managerial decisions and in case of necessity can affect the situation.
About the Author
A. V. ZagranovskaiaRussian Federation
Anna V. Zagranovskaia, PhD, Assistant Professor, Assistant Professor of the Department
Department for Applied Mathematics and Economic and Mathematical Methods
191023; 21 Sadovaya Str.; Saint Petersburg
References
1. Akoff R. Iskusstvo resheniya problem [The Art of Problem Solving]. Moscow, Mir, 1982. (In Russ.).
2. Afanasev D. O., Fedorova E. A., Rogov O. Yu. O vliyanii tonalnosti novostey v mezhdunarodnykh SMI na rynochnyy kurs rossiyskogo rublya: tekstovyy analiz [On the Influence of News Tone in International Media on the Market Exchange Rate of the Russian Ruble: Text Analysis]. Ekonomicheskiy zhurnal Vysshey shkoly ekonomiki [Economic Journal of the Higher School of Economics], 2019, Vol. 23, No. 2, pp. 264–289. (In Russ.).
3. Bogdanova T. K., Zhukova L. V. Informatsionno-logicheskaya model ekspress-analiza sootvetstviya sostoyaniya predpriyatiya, udovletvoryayushchego normativam i reglamentam, na osnove obshchedostupnykh dannykh [Information and Logical Model of Express Analysis of the Compliance of the State of an Enterprise that Satisfies Standards and Regulations, Based on Publicly Available Data]. Biznes-informatika [Business Informatics], 2022, Vol. 16, No. 1, pp. 42–55. (In Russ.).
4. Vorontsov K. V. Additivnaya regulyarizatsiya tematicheskikh modeley [Additive Regularization of Topic Models]. Matematicheskie metody raspoznavaniya obrazov [Mathematical Methods for Pattern Recognition], 2013, Vol. 16, No. 1, p. 88. (In Russ.).
5. Golovanova E. A., Zubarev A. V. Postroenie indikatora neopredelennosti po otnosheniyu k korrektirovke denezhno-kreditnoy politiki Banka Rossii na osnove novostnykh istochnikov [Construction of an Indicator of Uncertainty in Relation to the Adjustment of Monetary Policy of the Bank of Russia Based on News Sources]. Biznes-informatika [Business Informatics], 2020, Vol. 14, No. 4, pp. 62–75. (In Russ.).
6. Drobyshevskiy S. M., Trunin P. V., Bozhechkova A. V., Goryunov E. L., Petrova D. A. Analiz informatsionnoy politiki Banka Rossii [Analysis of the Information Policy of the Bank of Russia]. Voprosy ekonomiki [Economic Issues], 2017, No. 10, pp. 88–110. (In Russ.).
7. Zagranovskaya A. V. Strategicheskoe upravlenie v Rossii: avtomatizirovannoe postroenie prichinno-sledstvennoy diagrammy i vyyavlenie klyuchevykh tem po dannym SMI [Strategic Management in Russia: Automated Construction of a Cause-and-Effect Diagram and Identification of Key Topics Based on Media Data]. Prikladnaya informatika [Applied Informatics], 2023, Vol. 18, No. 2, pp. 73–84. (In Russ.).
8. Kaneman D. Dumay medlenno… reshay bistro [Think Slow... Decide Fast]. Moscow, AST, 2017. (In Russ.).
9. Karpov Yu. G. Imitatsionnoe modelirovanie sistem. Vvedenie v modelirovanie s Anylogic 5 [Simulation Modeling of Systems. Introduction to Simulation with Anylogic 5]. Saint Petersburg, BVKH-Petersburg, 2009. (In Russ.).
10. Krichevskiy M. L. Metody mashinnogo obucheniya pri vybore strategii predpriyatiya [Machine Learning Methods When Choosing an Enterprise Strategy]. Voprosy innovatsionnoy ekonomiki [Issues of Innovative Economics], 2019, Vol. 9, No. 1, pp. 251–266. (In Russ.).
11. Kuznetsova O. S., Ulyanova S. R. Valyutnyy kurs i verbalnye interventsii Banka Rossii i organov gosudarstvennoy vlasti [Exchange Rate and Verbal Interventions of the Bank of Russia and Government Authorities]. Ekonomicheskiy zhurnal Vysshey shkoly ekonomiki [Economic Journal of the Higher School of Economics], 2018, Vol. 22, No. 2, pp. 228–250. (In Russ.).
12. Medouz D. Kh., Medouz D. L., Renders Y., Berens V. V. Predely rosta [Growth Limits], translated by A. S. Sarkisov. Moscow, MGU, 1991. (In Russ.).
13. Opekunov A. N., Kuzmina M. G. Printsipy formirovaniya modeley prognozirovaniya veroyatnosti bankrotstva predpriyatiy s ispolzovaniem elementov mashinnogo obucheniya [Principles of Forming Models for Predicting the Probability of Bankruptcy of Enterprises Using Elements of Machine Learning]. Modeli, sistemy, seti v ekonomike, tekhnike, prirode i obshchestve [Models, Systems, Networks in Economics, Technology, Nature and Society], 2019, No. 4, pp. 24–31. (In Russ.).
14. Petrova D. A., Trunin P. V. Analiz vliyaniya press-relizov TSB RF na pokazateli denezhnogo rynka [Analysis of the Influence of Press Releases of the Central Bank of the Russian Federation on Money Market Indicators]. Biznes-informatika [Business Informatics], 2021, Vol. 15, No. 3, pp. 24–34. (In Russ.).
15. Savenkov P. A. Ispolzovanie metodov i algoritmov mashinnogo obucheniya v sistemakh podderzhki prinyatiya upravlencheskikh resheniy obucheniya [The Use of Machine Learning Methods and Algorithms in Training Management Decision Support Systems]. Vestnik nauki i obrazovaniya [Bulletin of Science and Education], 2019, No. 1–2 (55), pp. 23–25. (In Russ.).
16. Sidorenko V. N. Sistemnaya dinamika [System Dynamics]. Moscow, TEIS, 1998. (In Russ.).
17. Silov B. V. Prinyatie strategicheskikh resheniy v nechetkoy obstanovke v politike, makroekonomike, sotsiologii, menedzhmente, meditsine, ekologii [Making Strategic Decisions in an Ambiguous Environment]. Moscow, INPRO-RES, 1995. (In Russ.).
18. Fedorova E. A., Demin I. S., Khrustova L. E., Fedorov F. Yu., Osetrov R. A. Vliyanie tonalnosti pisem CEO na finansovye pokazateli kompanii [The Influence of the Tone of CEO Letters on the Company’s Financial Performance]. Rossiyskiy zhurnal menedzhmenta [Russian Journal of Management], 2017, Vol. 15, No. 4, pp. 441–462. (In Russ.).
19. Fedorova E. A., Stepnov I. M., Drogovoz P. A., Rashchupkina A. A., Remesnik A. A. Vliyanie urovnya raskrytiya korporativnoy sotsialnoy otvetstvennosti na tsenu aktsiy: kolichestvennyy i tekstovyy analiz [Impact of Corporate Social Responsibility Disclosure Level on Stock Price: Quantitative and Textual Analysis]. Ekonomicheskiy zhurnal Vysshey shkoly ekonomiki [Economic Journal of the Higher School of Economics], 2021, No. 25 (3), pp. 423–451. (In Russ.).
20. Axelrod R. Structure of Decision: The Cognitive Maps of Political Elites. Princeton, NJ, Princeton University Press, 1976.
21. Beckmann J., Czudaj R. Exchange Rate Expectations and Economic Policy Uncertainty. European Journal of Political Economy, 2017, Vol. 47, pp. 148–162.
22. Blei D. M., Lafferty J. D. A Correlated Topic Model of Science. The Annals of Applied Statistics, 2007, Vol. 1 (1), pp. 17–35.
23. Blinder A. S. et al. Central Bank Communication and Monetary Policy: A Survey of Theory and Evidence. Journal of Economic Literature, 2008, Vol. 46, No. 4, pp. 910–945.
24. Eden K., Ackermann F. Making Strategy: The Journey of Strategic Management. London, Sage, 1998.
25. Ederington L., Guan W., Zongfei L. The Impact of the U. S. Employment Report on Exchange Rates. Journal of International Money and Finance, 2019, Vol. 90, pp. 257–267.
26. Evans J. R. Total Quality Management, Organization, and Strategy. 4<sup>th</sup> ed. Mason, OH, Thomson South-Western, 2005.
27. Filatov D. Central Banks Communication and the State of the Economy. Available at: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3519846 (accessed 01. 02. 2021).
28. Forrester J. W. Counterintuitive Behavior of Social Systems. Technology Review, 1971, Vol. 73, No. 3, pp. 52–62.
29. Fu Y., Hao J.-X., Li X., Hsu C. H. C. Predictive Accuracy of Sentiment Analytics for Tourism: A Metalearning Perspective on Chinese Travel News. Journal of Travel Research, 2019, Vol. 58, No. 4, pp. 666–679.
30. Hansen S., McMahon M. Shocking Language: Understanding the Macroeconomic Effects of Central Bank Communication. Journal of International Economics, 2016, Vol. 99, Suppl. 1, pp. S114–S133.
31. Husted L., Rogers J., Sun B. Monetary Policy Uncertainty. International Finance Discussion Papers, 2017, No. 1215.
32. Kaplan R. S., Norton D. P. How Strategy Maps Frame an Organization’s Objectives. Financial Executive, 2004, Vol. 20, No. 2, pp. 40–45.
33. Kosko B. Fuzzy Cognitive Maps. International Journal of Man-Machine Studies, 1986, Vol. 24, pp. 65–75.
34. Kosko B. Neural Networks and Fuzzy Systems. Upper Saddle River, NJ, Prentice Hall, 1992.
35. Kreinovich V., Stylios Ch. Why Fuzzy Cognitive Maps Are Efficient. Departmental Technical Reports (CS), 2015, p. 929.
36. Kurov A., Stan R. Monetary Policy Uncertainty and the Market Reaction to Macroeconomic News. Journal of Banking & Finance, 2018, Vol. 86, pp. 127–142.
37. Le Q., Mikolov T. Distributed Representations of Sentences and Documents. Proceedings of the 31st International Conference on Machine Learning, PMLR, 2014, Vol. 32 (2), pp. 1188–1196.
38. Ludering J., Tillmann P. Monetary Policy on Twitter and Asset Prices: Evidence from Computational Text Analysis. North American Journal of Economics and Finance, 2018, April, pp. 1–18.
39. Moniz A., Jong de F. Predicting the Impact of Central Bank Communications on Financial Market Investors’ Interest Rate Expectations. Proceedings of the European Semantic Web Conference (ESWC 2014). 25–29 May 2014. Anissaras, Crete, Greece, 2014, pp. 144–155.
40. Nassirtoussi Kh. A., Aghabozorgi S., Ying Wah T., Ngo D. C. L. Text Mining of News-Headlines for FOREX Market Prediction: A Multi-layer Dimension Reduction Algorithm with Semantics and Sentiment. Expert Systems with Applications, 2015, Vol. 42 (1), pp. 306–324.
41. Nelson K. M., Nadkarni S., Narayanan V. K., Ghods M. Understanding Software Operations Support Expertise: A Revealed Causal Mapping Approach. MIS Quarterly, 2000, Vol. 24, No. 3, pp. 475–507.
42. Newman D., Lau J. H., Grieser K., Baldwin T. Automatic Evaluation of Topic Coherence. Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics. Stroudsburg, PA, USA, Association for Computational Linguistics, 2010, pp. 100–108.
43. Newman D., Noh Y., Talley E., Karimi S., Baldwin T. Evaluating Topic Models for Digital Libraries. Proceedings of the 10th Annual Joint Conference on Digital libraries. New York, USA, ACM, 2010, pp. 215–224.
44. Papageorgiou E. Review Study on Fuzzy Cognitive Maps and their Applications during the Last Decade. Paper Presented at the IEEE International Conference on Fuzzy Systems. Taipei, Taiwan, 2011.
45. Ponomareva N., Sheen J., Wang B. Z. Does Monetary Policy Respond to Uncertainty? Evidence from Australia. The Australian Economic Review, 2019, Vol. 52, No. 3, pp. 336–343.
46. Ranco G. et al. The Effects of Twitter Sentiment on Stock Price Returns. PLoS One, 2015, Vol. 10, No. 9.
47. Reis J. C. S. et al. Supervised Learning for Fake News Detection. IEEE Intelligent Systems, 2019, Vol. 34, No. 2, pp. 76–81.
48. Sharma N. et al. Web-Based Application for Sentiment Analysis of Live Tweets. 19<sup>th</sup> Annual International Conference on Digital Government Research: Governance in the Data Age. Delft, Netherlands, 2018, pp. 1–2.
49. Shen D., Urquhart A., Wang P. Does Twitter Predict Bitcoin? Economics Letters, 2019, Vol. 174, pp. 118–122.
50. Wolstenholme E. F. Qualitative vs. Quantitative Modelling: the Evolving Balance. Journal of the Operational Research Society, 1999, Vol. 50 (4), pp. 422–428.
Review
For citations:
Zagranovskaia A.V. Forecasting Macro-Economic Indicators Based on Text Information from Strategic Management Field in Russia. Vestnik of the Plekhanov Russian University of Economics. 2024;(3):38-53. (In Russ.) https://doi.org/10.21686/2413-2829-2024-3-38-53