Preview

Vestnik of the Plekhanov Russian University of Economics

Advanced search

Managing Re-Enterable Resources on Net Graphs with Uniform Intensity Functions

https://doi.org/10.21686/2413-2829-2025-5-36-48

Abstract

   The article studies optimum distribution of resources assigned to a certain set of interconnected operations by the criterion of minimizing time necessary to accomplish all the operations. In contrast to the traditional resource of separable type a resource of re-enterable type was shown, i. e. the type permitting repeated use. Formalization of the task in dynamic setting was provided. For cases of uniform linear productivity functions analytical solution was given and substantiated. Non-optimal character of certain heuristic algorithms was shown. Geometric criterion of optimum character for cases of two independent operations was highlighted. On this basis the case of complete internal resources switching was built.

About the Author

O. A. Kosorukov
Lomonosov Moscow State University; Russian Academy of National Economy and Public Administration under the President of the Russian Federation; Plekhanov Russian University of Economics
Russian Federation

Oleg A. Kosorukov, Doctor of Technical Sciences, Professor, Professor of the School, Professor of the Institute, Leading Researcher

Higher School of Management and Innovation; Institute of Mathematics,
Economics and Information Technology; Department of Mathematical Methods in Economics

119991; building 51, 1 Leninskie Gory; 119571; building 1, 82 Vernadsky Avenue; 109992; 36 Stremyanny Lane; Moscow



References

1. Alferov V. I., Budkov O. V., Burkov V. N. Opredelenie planov analiza i optimizatsii kompleksa operatsiy pri peremeshchenii resursov [Fixing Plans of Analysis and Optimization in Operation Complex during Resource Relocation]. Vestnik Voronezhskogo gosudarstvennogo tekhnicheskogo universiteta [Bulletin of the Voronezh State Technical University], 2011, Vol. 7, No. 5, pp. 171–174. (In Russ.).

2. Alferov V. I., Burkov V. N., Kravtsov A. E., Karpov Yu. A. Evristicheskie algoritmy raspredeleniya resursov [Heuristic Algorithms of Resource Distribution]. Vestnik Voronezhskogo gosudarstvennogo tekhnicheskogo universiteta [Bulletin of the Voronezh State Technical University], 2009, No. 12. (In Russ.). Available at: https://cyberleninka.ru/article/n/evristicheskie-algoritmy-raspredeleniya-resursov (accessed 09. 07. 2025).

3. Barkalov C. A., Moiseev S. I., Sukhomlinov A. I. Metodika optimizatsii setevogo grafika putem pereraspredeleniya resursov [Methodology of Net Graph Optimization by Resource Redistribution]. Proektnoe upravlenie v stroitelstve [Project Management in Construction], 2021, No. 3 (24), pp. 5–30. (In Russ.).

4. Burkov V. N., Volkov A. A., Nekhay R. G. Zadacha raspredeleniya resursov v multiproekte [The Task of Resource Distribution in Multi-Project]. Nauchniy vestnik Voronezhskogo gosudarstvennogo arkhitekturno-stroitelnogo universiteta. Seriya: Upravlenie stroitelstvom [Academic Bulletin of the Voronezh State Architecture and Construction University. Series: Construction Management], 2014, No. 1 (6), pp. 10–20. (In Russ.).

5. Burkov V. N., Gorgidze I. A., Lovetskiy S. E. Prikladnye zadachi teorii grafov [Applied Tasks in Graph Theory]. Tbilisi, Metsniireba, 1974. (In Russ.).

6. Burkov V. N., Rossikhina L. V., Vyunov A. P., Rogovaya L. V. Zadacha optimalnogo raspredeleniya komand spetsialistov [The Task of Optimum Distribution of Specialist Teams]. Avtomatika i telemekhanika [Automation and Tele-Mechanics], 2019, No. 1, pp. 116–125. (In Russ.).

7. Konovalov O. A., Konovalchuk E. V., Prokhorskiy R. A., Vinokurov D. S. Analiz usloviy resheniya zadachi raspredeleniya resursov s ogranicheniyami faktornogo prostranstva [Analyzing Conditions of Resolving Tasks of Resources Distribution with Restrictions on Factor Space]. Vestnik VGU. Seriya: sistemniy analiz i informatsionnye tekhnologii [Bulletin of VGU. Series: System Analysis and Information technologies]. 2018, No. 2, pp. 82–92. (In Russ.).

8. Kosorukov O. A., Belov A. G. Zadacha upravleniya resursami na setevykh grafikakh kak zadacha optimalnogo upravleniya [The Task of Resource Management on Net Graphs as Task of Optimum Management]. Vestnik Moskovskogo universiteta. Seriya 15. Vychislitelnaya matematika i kibernetika [Bulletin of the Moscow University. Series 15. Computer Mathematics and Cybernetics], 2014, No. 2, pp. 29–33. (In Russ.).

9. Kosorukov O. A., Lemtyuzhnikova D. V., Mishchenko A. V. Metody i modeli upravleniya resursami proekta v usloviyakh neopredelennosti [Methods and Models of Project Resource Management in Conditions of Uncertainty]. Izvestiya Rossiyskoy akademii nauk. Teoriya i sistemy upravleniya [Izvestiya of the Russian Academy of Sciences. Theory and Systems of Management], 2023, Vol. 2, No. 3, pp. 38–56. (In Russ.).

10. Lyakhov O. A. Model kalendarnogo planirovaniya proektov s pereraspredeleniem neskladiruemykh resursov [The Model of Calendar Planning in Projects with Redistribution of Non-Stock Resources]. Vestnik Buryatskogo gosudarstvennogo universiteta – Ulan-Ude [Bulletin of the Buryatskiy State University – Ulan-Ude], 2010, Issue 9, pp. 119–124. (In Russ.).

11. Lyakhov O. A. Resursy v setevom planirovanii slozhnykh kompleksov rabot [Resources in Net Planning of Complicated Complexes of Operations]. Problemy informatiki [Issues of Information Science], 2013, No. 1 (18), pp. 27–36. (In Russ.).

12. Mironov A. A., Tsurkov V. I. Transport-type Problems with a Minimax Criterion. Automation and Remote Control, 1995, Vol. 56 (12), No. 12, pp. 1752–1759.


Review

For citations:


Kosorukov O.A. Managing Re-Enterable Resources on Net Graphs with Uniform Intensity Functions. Vestnik of the Plekhanov Russian University of Economics. 2025;(5):36-48. (In Russ.) https://doi.org/10.21686/2413-2829-2025-5-36-48

Views: 42


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2413-2829 (Print)
ISSN 2587-9251 (Online)