SPECIFIC FEATURES OF MACAULAY DURATION DEPENDENCE ON PERIOD TO REDEMPTION
https://doi.org/10.21686/2413-2829-2017-3-142-150
Abstract
About the Author
Natalia V. PopovaRussian Federation
PhD, Assistant Professor, Professor of the Department for Higher Mathematics of the PRUE
36 Stremyanny Lane, Moscow, 117997, Russian Federation
References
1. Mel'nikov A. V., Popova N. V., Skornyakova V. S. Matematicheskie metody finansovogo analiza [Mathematic Methods of Finance Analysis]. Moscow, ANKIL, 2006. (In Russ.).
2. Popova N. V. O nekotorykh svoystvakh dyuratsii Makoleya [Concerning Certain Features of Macaulay Duration]. Vestnik finansovogo universiteta [Bulletin of the Finance University], 2011, No. 1 (61), pp. 42–46. (In Russ.).
3. Hawawini G. A. On the Mathematics of Macaulay's Duration: a Note. Available at: https://flora.insead.edu/fichiersti_wp/inseadwp1982/82-03.pdf
4. Kopprasch B. Duration: A Practitioner's View. Journal of Applied Finance, 2006, February 16, pp. 138–143.
5. Pianca P. Maximum Duration of Below Par Bonds: A Closed-form Formula. Available at:
6. http://ssrn.com/abstract=738445
Review
For citations:
Popova N.V. SPECIFIC FEATURES OF MACAULAY DURATION DEPENDENCE ON PERIOD TO REDEMPTION. Vestnik of the Plekhanov Russian University of Economics. 2017;(3):142-150. (In Russ.) https://doi.org/10.21686/2413-2829-2017-3-142-150