Methods of Machine-Aided Training in Small Business: Content and Management
https://doi.org/10.21686/2413-2829-2019-6-83-95
Abstract
The article provides key characteristics of standard methods of machine-aided training used by companies in operative business processes. Within the frames of home orientation to the innovation business development, digital economy and infrastructure for data storage the human factor becomes essential. The use of methods of artificial intellect by employees of small enterprises faces obstacles that imply personnel ignorance concerning strategic functionality of available today algorithms of business processes. Small commercial enterprises encounter the problem that they do not know the key instrumental principles of functioning and use of machine-aided training algorithms. At the same time business processes of the enterprise could be seriously improved through implementing algorithms of machine-aided training. The authors conducted a formal and analytical review of potential means for small business optimization. They described types of algorithms and models of machine-aided training, such as multiple regressive model, logistic regression, etc., as well as instrumental problems of their use by enterprise analysts and developers. Recommendations were prepared aimed at use of these models in order to raise the efficiency of small commercial enterprises.
About the Authors
S. A. TishchenkoRussian Federation
Sergey A. Tishchenko – PhD, Assistant Professor of the Department for Economic Informatics
1 Leninskie gory, Moscow, 119991
M. A. Shakhmuradian
Russian Federation
Mikhail A. Shakhmuradian – Post-Graduate Student of the Department for Economics of Innovation
1 Leninskie gory, Moscow, 119991
References
1. Barskiy A. B. Neyronnye seti: raspoznavanie, upravlenie, prinyatie resheniy [Neural Networks: Recognition, Management, Decision Making]. Moscow, Finance and Statistics, 2004. (In Russ.).
2. Brookshire J. Informatika i vychislitelnaya tekhnika [Computer Science and Computer Engineering]. 7th edition. Saint Petersburg, Piter, 2004. (In Russ.).
3. Gmakh D., Rolia D., Cherkasova L., Kemper A. Upravlenie vychislitelnoy moshchnostyu i prognozirovanie potrebnostey tsentrov obrabotki dannykh [Management of Computing Power and Forecasting the Needs of Data Centers]. Informatsionnaya bezopasnost [Information Security], 2008, No. 2 (112). (In Russ.). Available at: https://www.bytemag.ru/articles/detail.php?ID=11622
4. Grasse J. Data Science. Nauka o dannykh s nulya [Data Science. The Science of Data from Scratch], translated from English. Saint Petersburg, BKHV-Peterburg, 2017. (In Russ.).
5. Goodfellow Ya., Bengio I., Courville A. Glubokoe obuchenie [Deep Learning], translated from English by A. A. Slinkin. 2nd edition, corrected. Moscow, DMK Press, 2018. (In Russ.).
6. Devi S., Meysman A., Mokhamed A. Osnovy Data Science i Big Data. Python i nauka o dannykh [Fundamentals of Data Science and Big Data. Python and Data Science]. Saint Petersburg, Piter, 2017. (In Russ.).
7. Kozlov A., Kotov K., Sedov S. 3 primera primeneniya mashinnogo obucheniya dlya biznesa, chtoby ispolzovat biznes-protsessy [3 Examples of Using Machine Learning for Business to Leverage Business Processes]. (In Russ.). Available at: https://www.gd.ru/articles/9073-mashinnoe-obuchenie (accessed 01.11.2019).
8. Nikolenko S. I., Tulupev A. L. Samoobuchayushchiesya sistemy [Self-Learning Systems]. Moscow, MTSNMO, 2009. (In Russ.).
9. Nikolenko S., Kadurin A., Arkhangelskaya E. Glubokoe obuchenie [Deep Learning]. Saint Petersburg, Piter, 2018. (In Russ.).
10. Oreshkov V. I., Vasilev E. P. Sovershenstvovanie protsessa prinyatiya upravlencheskikh resheniy v ekonomike i biznese na osnove primeneniya intellektualnogo analiza dannykh [Improvement of the Process of Making Administrative Decisions in Economics and Business on the Basis of Application of Intellectual Data Analysis]. Fundamentalnye issledovaniya [Fundamental Research], 2012, No. 9-4, pp. 965–971. (In Russ.). Available at: http://www.fundamental-research.ru/ru/article/view?id=30432 (accessed 20.03.2019).
11. Plus V. Dzh. Python dlya slozhnykh zadach: nauka o dannykh i mashinnoe obuchenie [Vander Python for Complex Tasks: Data Science and Machine Learning]. Saint Petersburg, Piter, 2018. (In Russ.).
12. Sutton R. S., Barto E. G. Obuchenie s podkrepleniem [Training with Reinforcement], translated from English. Moscow, Binom, 2011. (In Russ.).
13. Segaran T. Programmiruem kollektivnyy razum [Programming a Collective Mind], translated from English. Saint Petersburg, Simvol-Plyus, 2008. (In Russ.).
14. Tarik R. Sozdaem neyronnuyu set [Create a Neural Network], translated from English. Saint Petersburg, OOO «Alfa-kniga», 2017. (In Russ.).
15. Trask E. Grokaem glubokoe obuchenie [Grokay Deep Learning]. Saint Petersburg, Piter, 2019. (Seriya «Biblioteka programmista»). (In Russ.).
16. Amunategui M., Roopaei M. Monetizing Machine Learning: Quickly Turn Python ML Ideas into Web Applications on the Serverless Cloud. New York, Apress, 2018.
17. Bishop C. M. Pattern Recognition and Machine Learning. New York, Springer Science + Business Media, LLC, 2006. Available at: https://pdfs.semanticscholar.org/8f8f/9222d66a30f1f4026dc1035ef10f9ccd079d.pdf (accessed 06.11.2018).
18. Bonaccorso G. Machine Learning Algorithms: Popular Algorithms for Data Science and Machine Learning. 2nd edition. Birmingham, UK, Published by Packt Publishing Ltd., 2018.
19. Dangeti P. Statistics for Machine Learning. Birmingham, UK, Published by Packt Publishing Ltd., 2017.
20. Fox C. Data Science for Transport. Springer Textbooks in Earth Sciences, Geography and Environment. Springer, 2018.
21. Kevin P. Murphy Machine Learning A Probabilistic Perspective. Cambridge, The MIT Press Cambridge, 2012.
22. Lakshmi P. Y. Big Data Analytics Made Easy. Chennai, India, Notion Press, 2016.
23. Leaders look to embrace AI, and high-growth companies are seeing the benefits. Available at: https://news.microsoft.com/europe/features/leaders-look-to-embrace-ai-and-high-growth-companies-are-seeing-the-benefits/ (accessed 10.03.2019).
24. Liu Y. Python Machine Learning by Example: Implement Machine Learning Algorithms and Techniques to Build Intelligent Systems. 2nd edition. Birmingham, UK, Published by Packt Publishing Ltd., 2019.
25. Marr B. Big Data: Using Smart Big Data, Analytics and Metrics to Make Better Decisions and Improve Performance. United Kingdom, 2015. Available at: https://www.wiley.com/en-us/Big+Data%3A+Using+SMART+Big+Data%2C+Analytics+and+Metrics+To+Make+Better+Decisions+and+Improve+Performance-p-9781118965832
26. Minichino J., Howse J. Learning Open CV 3 Computer Vision with Python. 2nd edition. Birmingham, UK, Published by Packt Pulishing Ltd., 2015.
27. Provost F., Fawcett T. Data Science for Business. Sebastopol, O’Reilly Media, Inc., 2013.
28. Raman A., Hyong Tok W. A Developer’s Guide to Building AI Aplications. Sebastopol, O’Reilly Media, Inc., 2018.
29. Rosing M., Scheer A., Scheel H. The Complete Business Process Handbook: Body of Knowledge from Process Modeling to BPM. Vol. 1. Elsevier Inc., 2015.
30. Yawen L., Yang L., Yang B., Wang N., Wu T. Application of Interpretable Machine Learning Models for the Intelligent Decision. Neurocomputing, 2019, Vol. 333, pp. 273–283.
31. Zhang J., Zhan Z., Lin Y., Chen N., Gong Y., Zhong J. Evolutionary Computation Meets Machine Learning: A Survey. Iee Computational Intelligence Magazine, 2011, November. Available at: http://www.dblab.ntua.gr/~gtsat/collection/Machine%20Learning/06052374.pdf (accessed 03.10.2018).
Review
For citations:
Tishchenko S.A., Shakhmuradian M.A. Methods of Machine-Aided Training in Small Business: Content and Management. Vestnik of the Plekhanov Russian University of Economics. 2019;(6):83-95. (In Russ.) https://doi.org/10.21686/2413-2829-2019-6-83-95