Using Methods of Intellectual Analysis to Step up Profitability of Network Business
https://doi.org/10.21686/2413-2829-2022-2-176-185
Abstract
About the Authors
N. P. SavinaRussian Federation
Natalya P. Savina - PhD, Assistant Professor of the Department for World Economy
36 Stremyanny Lane, Moscow, 117997
N. A. Galstyan
Russian Federation
Narek A. Galstyan - Data analyst
70 Leningradsky Avenue, Moscow, 125315
O. V. Litvishko
Russian Federation
Oleg V. Litvishko - PhD, Assistant Professor of the Department for Financial Management
36 Stremyanny Lane, Moscow, 117997
E. A. Zakrevskaya
Russian Federation
Ekaterina A. Zakrevskaya - PhD, Assistant Professor of the Department for Mathematical Methods in Economics
36 Stremyanny Lane, Moscow, 117997
References
1. Gudfellou Ya., Bendzhio I., Kurvill A. Glubokoe obuchenie [Deep Learning], translated from English by A. A. Slinkin. Moscow, DMK Press, 2018. (In Russ.).
2. Litvishko O. V. Finansovye aspekty funktsionirovaniya sportivnykh klubov [Financial Aspects of the Functioning of Sports Clubs]. Teoriya i praktika fizicheskoy kultury [Theory and Practice of Physical Culture], 2011, No. 5, pp. 77. (In Russ.).
3. Obuchenie bez uchitelya: 4 metoda klasterizatsii dannykh na Python. 2018 [Teaching without a teacher: 4 methods of data clustering in Python. 2018]. (In Russ.). Available at: https://proglib.io/p/unsupervised-ml-with-python/ (accessed 01.11.2021).
4. Sokolov E. A. Lektsiya 12. Obuchenie bez uchitelya [Lecture 12. Teaching without a teacher]. (In Russ.). Available at: https://github.com/esokolov/ml-course-hse/blob/master/2016-fall/lecture-notes/lecture12-unsupervised.pdf (accessed 01.11.2021).
5. Chubukova I. A. Kurs lektsiy «Data Mining». Natsionalnyy otkrytyy internet-universitet informatsionnykh tekhnologiy «INTUIT». 2018 [Course of lectures "Data Mining". National Open Internet University of Information Technologies "INTUIT". 2018]. (In Russ.). Available at: http://www.intuit.ru/department/database/datamining (accessed 01.11.2021).
6. Agglomerative Hierarchical Clustering. International online learning resource for Data Mining and Statistics «Data Novia». 2019. Available at: https://www.datanovia.com/en/lessons/agglomerative-hierarchical-clustering/ (accessed 01.11.2021).
7. Dabbura I. K-means Clustering: Algorithm, Applications, Evaluation Methods, and Drawbacks. Online publishing platform Medium. 2018. Available at: https://towardsdatascience.com/k-means-clustering-algorithm-applications-evaluation-methods-anddrawbacks-aa03e644b48a (accessed 01.11.2021).
8. Das A. Segmentation using Unsupervised Learning Technique – Clustering. Online publishing platform Medium. 2018. Available at: https://towardsdatascience.com/segmentation-using-unsupervised-learning-technique-clustering-bb4089c6392e (accessed 01.11.2021).
9. Girgin S. K-Means Clustering Model in 6 Steps with Python. Online publishing platform Medium. 2019. Available at: https://medium.com/pursuitnotes/k-means-clustering-model-in-6-steps-with-python-35b532cfa8ad (accessed 01.11.2021).
10. Korolev S. Open Machine Learning Course. Topic 7. Unsupervised Learning: PCA and Clustering. Online publishing platform Medium. 2018. Available at: https://medium.com/open-machine-learning-course/open-machine-learning-course-topic-7-unsupervised-learningpca-and-clustering-db7879568417 (accessed 01.11.2021).
11. Litvishko O., Beketova K., Akimova B., Azhmukhamedova A., Islyam G. Impact of the Digital Economy on the Banking Sector. E3S Web of Conferences. 1st International Conference on Business Technology for a Sustainable Environmental System. BTSES-2020. Almaty, 2020. С. 04033.
12. Nakagomi K. Cluster Analysis of Pharmacists’ Work Attitudes. Journal of General and Family Medicine, Japan, 2017. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5729359/ (accessed 01.11.2021).
13. Selecting the number of clusters with silhouette analysis on KMeans clustering. Online platform of machine learning in Python. 2019. Available at: https://scikit-learn.org/stable/auto_examples/cluster/plot_kmeans_silhouette_analysis.html (accessed 01.11.2021).
14. Todd A., Thomson K., Kasim A., Bambra C. Cutting Care Clusters: the Creation of an Inverse Pharmacy Care Law? An area-level analysis exploring the clustering of community pharmacies in England. BMJ Open Journal, England, 2018. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6074640/ (accessed 01.11.2021).
15. VanderPlas J. Python Data Science Handbook: Essential Tools for Working with Data. O'Reilly Media, 2016.
16. Vivek S. Clustering algorithms for customer segmentation. Online publishing platform Medium. 2018. Available at: https://towardsdatascience.com/clustering-algorithms-forcustomer-segmentation-af637c6830ac (accessed 01.11.2021).
17. Wijaya C. Y. Breaking down the agglomerative clustering process. Online publishing platform Medium. 2019. Available at: https://towardsdatascience.com/breaking-down-theagglomerative-clustering-process-1c367f74c7c2 (accessed 01.11.2021).
Review
For citations:
Savina N.P., Galstyan N.A., Litvishko O.V., Zakrevskaya E.A. Using Methods of Intellectual Analysis to Step up Profitability of Network Business. Vestnik of the Plekhanov Russian University of Economics. 2022;(2):176-185. (In Russ.) https://doi.org/10.21686/2413-2829-2022-2-176-185