Preview

Vestnik of the Plekhanov Russian University of Economics

Advanced search

Variation Approach and Principle of Maximum in Theory of Dynamic Systems

https://doi.org/10.21686/2413-2829-2023-14-24

Abstract

The article shows dynamics of value figures on market of digital finance assets. The research studies methods of the sensitivity theory in tasks of optimal management of non-linear systems for automated monitoring and controlling the portfolio of digital finance assets and crypto-currencies. The authors study process modeling in economic systems, set the task of optimal management by the system of non-linear differential equations and target functionality, describe the variation method of task resolving, the principle of invariability of non-linear systems and possibilities to model economic systems provided by the solution. The approach to investigating dynamics of economic systems based on the principle of maximum was analyzed. The article shows possible application of the approach for resolving optimization tasks and for methods of management with split and continuous character in conditions of uncertainty typical of economic systems. Functions of non-linear sensitivity are identified. The use of the sensitivity theory for tasks of optimal management of non-linear systems was studied, illustrated by estimating the vector of unknown parameters of dynamic system. The authors analyze the condition in tasks of economic modeling with regard to uncertainty caused by social and psychological reasons. The material provided in the article shows possibilities of using the method of sensitivity analysis for tasks of system decomposition and related transformations in systems of differential equations.

About the Author

A. Yu. Proskuryakov
Murom Institute (branch) of the Vladimir State University
Russian Federation

Alexander Yu. Proskuryakov - PhD, Associate Professor, Associate Professor of the Department for Electronics and Computer Engineering

23 Orlovskaya Str., Murom, Vladimir region, 602264



References

1. Aseev S. M., Besov K. O., Kryazhimskiy A. V. Zadachi optimalnogo upravleniya na beskonechnom intervale vremeni v ekonomike [The Problems of Optimal Control on the Infinite Time Interval in Economics]. Uspekhi matematicheskikh nauk [Successes of Mathematical Sciences], 2012, Vol. 67, Issue 2, pp. 3–64. (In Russ.).

2. Aseev S. M., Kryazhimskiy A. V. Printsip maksimuma Pontryagina i zadachi optimalnogo ekonomicheskogo rosta [Pontryagin's Maximum Principle and the Problem of Optimal Economic Growth]. Trudy MIAN [Proceedings of MIAN], 2007, Vol. 257, pp. 3–271. (In Russ.).

3. Velichenko V. V. O variatsionnom metode v probleme invariantnosti upravlyaemykh sistem [On the Variational Method in the Problem of Invariance of Controllable Systems]. Avtomatika i telemekhanika [Automation and Telemechanics], 1972, No. 4, pp. 22–35. (In Russ.).

4. Demin N. S., Kuleshova E. V. Upravlenie odnosektornoy ekonomikoy na konechnom intervale vremeni s uchetom potrebleniya rabotodateley [Management of Single-Sector Economy on a Finite Time Interval Taking into Account Employers' Consumption]. Avtomatika i telemekhanika [Automation and Telemechanics], 2008, No. 9, pp. 140–155. (In Russ.).

5. Emelyanov S. V., Korovin S. K. Skolzyashchie rezhimy vysshikh poryadkov v sistemakh avtomaticheskogo upravleniya [Sliding Modes of Higher Orders in Automatic Control Systems]. Sbornik trudov ISA RAN [ISA RAS Proceedings], 1993, Issue 2, pp. 39–70. (In Russ.).

6. Emelyanov S. V., Korovin S. K., Mamedov I. G., Nosov A. N. Asimptoticheskaya invariantnost v zadachakh upravleniya neopredelennymi obektami [Asymptotic Invariance in Problems of Control of Uncertain Objects]. Doklady AN SSSR [Reports of the Academy of Sciences of the USSR], 1990, Vol. 301, No. 1, pp. 44–49. (In Russ.).

7. Emelyanov S. V., Korovin S. K., Mamedov I. G., Nosov A. N. Asimptoticheskaya invariantnost sistem upravleniya s zapazdyvaniem [Asymptotic Invariance of Control Systems with Lagging]. Differentsialnye uravneniya [Differential Equations], 1991, Vol. 27, No. 3, pp. 415–427. (In Russ.).

8. Kochetkov S. A., Utkin V. A. Invariantnost v sistemakh s nesoglasovannymi vozmushcheniyami [Invariance in Systems with Incoherent Perturbations]. Avtomatika i telemekhanika [Automation and Telemechanics], 2013, No. 7, pp. 46–83. (In Russ.).

9. Krasnova S. A., Utkin V. A., Utkin A. V. Blochnyy podkhod k analizu i sintezu invariantnykh nelineynykh sistem slezheniya [Block Approach to the Analysis and Synthesis of Invariant Nonlinear Tracking Systems]. Avtomatika i telemekhanika [Automation and Telemechanics], 2017, No. 12, pp. 26–53. (In Russ.).

10. Krasovskiy A. A., Tarasev A. M. Postroenie nelineynykh regulyatorov v modelyakh ekonomicheskogo rosta [Construction of Nonlinear Regulators in Models of Economic Growth.]. Trudy instituta matematiki i mekhaniki UrO RAN [Proceedings of the Institute of Mathematics and Mechanics of UB RAS], 2009, Vol. 15, No. 13, pp. 127–138. (In Russ.).

11. Krasovskiy A. A., Tarasev A. M. Svoystva gamiltonovykh sistem i printsipa maksimuma Pontryagina dlya zadach ekonomicheskogo rosta [Properties of Hamiltonian Systems and Pontryagin's Maximum Principle for Problems of Economic Growth]. Trudy MIAN [Proceedings of MIAN], 2008, Vol. 262, pp. 127–145. (In Russ.).

12. Mayorov E. V., Alekseeva T. Analiz modeley nelineynoy dinamiki ekonomicheskikh protsessov sredstvami sistemy MATLAB [Analysis of Nonlinear Dynamics Models of Economic Processes by Means of MATLAB System]. Nauchno-tekhnicheskie vedomosti SPbGPU. Ekonomicheskie nauki [Scientific and Technical Bulletin of Saint Petersburg State Pedagogical University. Economic Sciences], 2014, No. 2 (192), pp. 200–205. (In Russ.).

13. Matrosov V. V., Shalfeev V. D. Modelirovanie ekonomicheskikh i finansovykh tsiklov: generatsiya i sinkhronizatsiya [Modeling Economic and Financial Cycles: Generation and Synchronization]. Izvestiya vysshikh uchebnykh zavedeniy. Prikladnaya nelineynaya dinamika [News of Higher Educational Institutions. Applied Nonlinear Dynamics], 2021, Vol. 29, No. 4, pp. 127–138. (In Russ.).

14. Moiseev N. N. Chislennye metody v teorii optimalnykh system [Numerical Methods in the Theory of Optimal Systems]. Moscow, LENAND, 2020. (In Russ.).

15. Paraev Yu. I., Poluektova K. O. Optimalnoe upravlenie odnosektornoy ekonomikoy pri sluchaynom izmenenii osnovnogo kapitala i trudovykh resursov [Optimal Management of Single-Sector Economy with Random Changes in Fixed Capital and Labor Resources]. Avtomatika i telemekhanika [Automation and Telemechanics], 2020, No. 4, pp. 162–172. (In Russ.).

16. Petrov B. N. Izbrannye trudy. T. 1. Teoriya avtomaticheskogo upravleniya [Selected works. Vol. 1. Theory of Automatic Control]. Moscow, Nauka, 1983. (In Russ.).

17. Pontryagin L. S., Boltyanskiy V. G., Gamkrelidze R. V., Mishchenko E. F. Matematicheskaya teoriya optimalnykh protsessov [Mathematical Theory of Optimal Processes]. Moscow, Nauka, 1983. (In Russ.).

18. Rozenvasser E. N., Yusupov R. M. Chuvstvitelnost sistem upravleniya [Sensitivity of Control Systems]. Moscow, Nauka, 1981. (In Russ.).

19. Rozonoer L. I. Variatsionnyy podkhod k probleme invariantnosti sistem avtomaticheskogo upravleniya. I, II [A Variational Approach to the Problem of Invariance of Automatic Control Systems. I, II]. Avtomatika i telemekhanika [Automation and Telemechanics], 1963, I, No. 6, pp. 744–756; II, No. 7, pp. 861–670. (In Russ.).

20. Sovremennye metody proektirovaniya sistem avtomaticheskogo upravleniya. Analiz i sintez [Modern Methods of Designing Automatic Control Systems. Analysis and Synthesis], edited by B. N. Petrov, V. V. Solodovnikov, Yu. I. Topcheev. Moscow, Mashinostroenie, 1967. (In Russ.).

21. Tekhnicheskaya kibernetika. Teoriya avtomaticheskogo regulirovaniya. Kn. 2. Analiz i sintez lineynykh nepreryvnykh i diskretnykh sistem avtomaticheskogo regulirovaniya [Technical Cybernetics. Theory of Automatic Regulation. Book 2. Analysis and Synthesis of Linear Continuous and Discrete Automatic Control Systems], edited by V. V. Solodovnikov. Moscow, Mashinostroenie, 1967. (In Russ.).

22. Tomovich R., Vukobratovich M. Obshchaya teoriya chuvstvitelnosti [General Theory of Sensitivity]. Moscow, Soviet Radio, 1972. (In Russ.).

23. Utkin A. V., Utkin V. A. Sintez sistem stabilizatsii pri odnostoronnikh ogranicheniyakh na upravlyayushchie vozdeystviya [Synthesis of Stabilization Systems under One-Sided Restrictions on Control Actions]. Problemy upravleniya [Problems of Control], 2020, No. 3, pp. 3–13. (In Russ.).

24. Utkin V. I., Orlov Yu. V. Sistemy upravleniya s vektornymi rele [Control Systems with Vector Relays]. Avtomatika i telemekhanika [Automation and Telemechanics], 2019, No. 9, pp. 143–155. (In Russ.).

25. Chuvstvitelnost avtomaticheskikh sistem: trudy Mezhdunarodnogo simpoziuma po chuvstvitelnym sistemam avtomaticheskogo upravleniya (Dubrovnik, sentyabr 1964) [Sensitivity of Automatic Systems. Proceedings of the International Symposium on Sensitive Automatic Control Systems (Dubrovnik, September 1964)], edited by Ya. Z. Tsypkin. Moscow, Nauka, 1968. (In Russ.).

26. Blot J., Chebbi H. Discrete Time Pontryagin Principles with Infinite Horizon. Journal of Mathematical Analysis and Applications, 2000, No. 246, pp. 265–279.

27. Craven B. D. Optimal Control on an Infinite Domain. ANZIAMJ, 2005, No. 47, pp. 143–153.

28. Maliar L., Maliar S., Winant P. Deep Learning for Solving Dynamic Economic Models. Journal of Monetary Economics, 2021, No. 122, pp. 76–101.

29. Pereira F. L., da Silva G. N. Necessary Conditions of Optimality for Constrained Infinite Horizon Differential Inclusions. 5th International Conference on Physics and Control (PhysCon 2011). Leon, Spain, 2011.

30. Perevoznikov E., Lomteva E. Modeling of Economic Processes, Instability and Chaos. Journal of Applied Mathematics and Physics, 2019, No. 7, pp. 356–363.

31. Seierstad A. A. Maximum Principle for Smooth Infinite Horizon Optimal Control Problems with State Constraints and with Terminal Constraints at Infinity. Open Journal of Optimization, 201 No. 4, pp. 100–130.

32. Special Issue on Sensitivity. Journal of the Franklin Institute, 1981, Vol. 312, No. 3-4, pp. 141–216.


Review

For citations:


Proskuryakov A.Yu. Variation Approach and Principle of Maximum in Theory of Dynamic Systems. Vestnik of the Plekhanov Russian University of Economics. 2023;20(5):14-24. (In Russ.) https://doi.org/10.21686/2413-2829-2023-14-24

Views: 273


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2413-2829 (Print)
ISSN 2587-9251 (Online)