Preview

Vestnik of the Plekhanov Russian University of Economics

Advanced search

INNOVATION CERAMIC BIOTECHNOLOGY: KEY DIRECTIONS, WAYS OF UTILIZATION AND ADVANTAGES

https://doi.org/10.21686/2413-2829-2017-1-171-178

Abstract

The article gives a review of works dealing with biological impact on ceramic masses. The authors identify key directions and differences in technology of bio-treatment depending on the type of microorganisms, ways of obtaining and composition of cultural liquid, conditions and method of bio-treatment and natural coenosis of ceramic masses. The impact of cultural liquids with bacteria on rheological properties of ceramic masses was investigated. Surface activity of cultural liquid causes reduction in fluidity and thixotropic strengthening of ceramic dross. Increasing mass of casting is stipulated by rendering hydrophobic to surface of clayish particles of ceramic dross. The experience of using bio-treatment in ceramic industry was discussed.

About the Authors

Raisa A. Platova
Plekhanov Russian University of Economics
Russian Federation

PhD, Assistant Professor of the Department for Commodity Research and Commodity Expertise of the PRUE

36 Stremyanny Lane, Moscow, 117997, Russian Federation



Alla V. Ryzhakova
Plekhanov Russian University of Economics
Russian Federation

Doctor of Technical Science, Professor of the Department for Commodity Research and Commodity Expertise of the PRUE

36 Stremyanny Lane, Moscow, 117997, Russian Federation



Yuriy T. Platov
Plekhanov Russian University of Economics
Russian Federation

Doctor of Technical Science, Professor of the Department for Commodity Research and Commodity Expertise of the PRUE

36 Stremyanny Lane, Moscow, 117997, Russian Federation



References

1. Vlasov A. S. Biologicheskie metody obogashcheniya mineral'nogo syr'ya i tekhnologicheskikh smesey pri proizvodstve keramiki [Biological Methods of Enriching Mineral Raw Materials and Technological Mix in Ceramics Production]. Khimiya i tekhnologiya silikatnykh i tugoplavkikh nemetallicheskikh materialov [Chemistry and Technology of Silicate and High-Heat Non-Ferrous Metals]. Leningrad, 1989. (In Russ.).

2. Dyatlova E. M., Kakoshko E. S., Biryuk V. A., Markevich R. M. Uluchshenie reologicheskikh svoystv glinistykh suspenziy, obrabotannykh kul'tural'noy zhidkost'yu Bacillus mucilaginosus [Improvement of the Rheological Properties of Clayey Suspensions Treated with Bacillus mucilaginosus Culture Liquid]. Steklo i keramika [Glass and Ceram], 2010, No. 3, pp. 29–32. (In Russ.).

3. Maslennikova G. N., Platov Yu. T., Khalilullova R. A., Avakyan Z. A., Shelobolina E. S., Karavayko G. I. Vliyanie mikroorganizmov na svoystva farforovykh mass pri vylezhivanii [The Effect of Microorganisms on the Properties of Porcelain Mixtures in Maturing (A review)]. Steklo i keramika [Glass and Ceram], 1999, No. 10, pp. 15–22. (In Russ.).

4. Platova R. A. Otsenka effektivnosti udaleniya zheleza pri biokhimicheskom sposobe obrabotki kaolina [Evaluation of the Efficiency of Iron Removal in the Biochemical Treatment of Kaolin]. Steklo i keramika [Glass and Ceram], 2014, No. 12, pp. 31–37. (In Russ.).

5. Platova R. A., Sokolova D. Sh., Platov Yu. T. Reologicheskie svoystva farforovogo shlikera s biosurfuktantami [Rheological Properties of Porcelain Slip with Biosurfactants]. Steklo i keramika [Glass and Ceram], 2016, No. 2, pp. 18–23. (In Russ.).

6. Platova R. A., Chernyshov A. N., Maslennikova G. N. Biologicheskaya obrabotka glinistykh materialov i keramicheskikh mass: osnovnye napravleniya, sposoby i opyt primeneniya (obzor) [Biotreatment of Clayey Materials and Ceramic Pastes: Directions, Methods and Experience (review)]. Steklo i keramika [Glass and Ceram], 2012, No. 7, pp. 15–22. (In Russ.).

7. Sokolova D. Sh. Obrazovanie poverkhnostno-aktivnykh veshchestv aerobnymi organotrofnymi bakteriyami neftyanykh plastov. Dis. kand. biol. Nauk [Formation of Surface-Active Matters by Aerobic Organotrophic Bacteria of Oil Bed. PhD diss.]. Moscow, 2013. (In Russ.).

8. Banat I. M. Biosurfactants Production and Possible Uses in Microbial Enhanced Oil Recovery and Oil Pollution Remediation: a Review. Bioresource Technology, 1995, Vol. 51, No. 1, pp. 1–12.

9. Davis D. A., Lynch H. C., Varley J. The Production of Surfactin in Batch Culture by Bacillus Subtilis ATCC 21332 is Strongly Influenced by the Conditions of Nitrogen Metabolism. Enzyme Microbiology Technology, 1999, Vol. 25, pp. 322–329.

10. Desai J. D., Banat I. M. Microbial Production of Surfactants and their Commercial Potential. Microbial Mol. Biol. Res., 1997, Vol. 61, pp. 47–64.

11. Guerra-Santos L. Dependents of Psedomonas aer. Continuous. Applied Microbiology Biotechnology, 1986, Vol. 24, pp. 443–448.

12. Hailiang Dong, Deb. P. Jaisi, Kim J. Microbe–Clay Mineral Interactions. American Mineralogist, 2009, Vol. 94, No. 11-12, pp. 1505–1519.

13. Hosseini M. R., Pazouki M., Ranjbar M. Bioleaching of Iron from Highly Contaminated Kaolin Clay by Aspergillus Niger. Applied Clay Science, 2007, Vol. 37, No. 3-4, pp. 251–257.

14. Pacwa-Plociniczak M., Plaza G. A., Piotrowska-Seget Z., Cameotra S. Environmental Applications of Biosurfactants: Resent Advances. International Journal of Molecular Science, 2011, Vol. 12, No. 1, pp. 633–654.

15. Rosenberg E., Ron E. Z. High- and Low-Molecular-Mass Microbial Surfactants. Applied Microbiology Biotechnology, 1999, Vol. 52, No. 2, pp. 154–162.

16. Volkan A., Oktay B. Removal of Fe from Kaolin by Chemical Leaching and Bioleaching. Clay and Сlay Minerals, 2009, Vol. 57, No. 6, pp. 787–794.


Review

For citations:


Platova R.A., Ryzhakova A.V., Platov Yu.T. INNOVATION CERAMIC BIOTECHNOLOGY: KEY DIRECTIONS, WAYS OF UTILIZATION AND ADVANTAGES. Vestnik of the Plekhanov Russian University of Economics. 2017;(1):171-178. (In Russ.) https://doi.org/10.21686/2413-2829-2017-1-171-178

Views: 296


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2413-2829 (Print)
ISSN 2587-9251 (Online)